Standing Statistics Right Side Up

During the years I taught students about diag-
nostic reasoning, I would begin by explaining
that the sensitivity of a diagnostic test for disease X
is found by measuring how often the test result is
positive in a population of patients, all of whom are
known (by some independent and definitive crite-
rion, the “gold standard“) to have disease X: that is,
by measuring the frequency of true-positive results
in that population. A test that yields positive results
in 95 of 100 diseased patients, for example, has a
sensitivity of 0.95. We would then talk about test
specificity—the likelihood that the same test would
have a false-positive result in a population of pa-
tients known by the gold standard not to have the
disease. A test that yields positive results in 10 of
100 nondiseased patients has a specificity of 0.90.
I would then ask the students to imagine that in
working up a new patient, they have gotten back a
positive result from a test with the above sensitivity
and specificity. What would they tell the patient
about his or her probability of having disease X?
Their answer was almost always “95%.” On the face
of it, that answer seems pretty reasonable: Isn’t that
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what you’d expect if a test were capable of detecting
95% of diseased patients? The problem is, it’s
wrong; worse, it actually stands diagnostic reasoning
on its head.

In fact, test sensitivity and specificity are deduc-
tive measurements; they reason down from hypoth-
esis (we assume the truth of the hypothesis that the
patient being tested does, or does not, have the dis-
ease) to data (the likelihood that we will get a
positive test result). The students’ reasoning is up-
side down because what clinicians and patients re-
ally need to know is exactly the inverse. In short,
they need an inductive measurement, a reasoning up
from data (the test result) to hypothesis (that the
patient has the disease).

Stated differently, what clinicians and patients
need is a way to calculate the probability that any
particular test result, positive or negative, is a true
result. It is possible to make that inductive calcula-
tion, but doing so requires combining sensitivity and
specificity to create something called a likelihood
ratio, which is an overall measure of the “evidence”
provided by the test result (positive or negative)
itself. The likelihood ratio is then used to modify
the pretest estimate (the “prior probability”) that
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the patient has the disease, thereby creating a new
and better post-test estimate—sometimes known as
the test’s predictive value—of the chance that the
patient has the disease. (For obvious reasons, pre-
dictive values are also known as posterior probabili-
ties. Positive predictive values express the post-test
likelihood that disease is present after a positive test
result; negative predictive values indicate the post-
test likelihood that disease is absent after a negative
test result.)

Although the deductive inference in a test’s sen-
sitivity and specificity differs profoundly from the
inductive inference in its predictive values, that dif-
ference is also an extremely subtle one; it was not
widely appreciated in the biomedical literature until
the mid-1970s (1). In a two-part article in this issue
(2, 3), Goodman demonstrates how the standard
statistical methods (sometimes called “frequentist”
statistics) used in analyzing biomedical research,
which we have come to accept as a kind of revealed
truth, also stand statistical inference on its head in
much the same way that students’ initial attempts at
diagnostic reasoning do.

The article by Goodman is not light reading. He
is, however, a true hermeneut, a venerable word
meaning “one who is skilled at interpretation.”
Those who make the effort to understand him will
be rewarded with a number of important, if discon-
certing, insights. Thus, just as clinicians need to
know the likelihood that a particular patient has a
disease given a certain test result, researchers (and
those who read papers describing research) need to
know the likelihood that a hypothesis is true given
the data actually obtained in a particular trial or
experiment. Both of these are inductive inferences.
But, as Goodman points out, researchers generally
resort to an inverse, deductive calculation. That is,
they calculate the probability of finding the results
they actually obtained, plus any more extreme re-
sults, on the assumption that a certain hypothesis is
true (usually the “null hypothesis”—the assumption
that the comparison groups do not differ), a concept
expressed in the all-too-familiar P value.

The P value has been the subject of much criti-
cism because a P value of 0.05 has been frequently
and arbitrarily misused to distinguish a true effect
from lack of effect. Although Goodman does not
disagree with that criticism, his real concerns lie
deeper, and he catalogues for us several more seri-
ous and more convoluted misinterpretations of the
concepts of evidence, error, and testing. These mis-
conceptions are particularly troubling because they
confuse our ability to judge whether, over the long
run of experience with many studies, “we shall not
often be wrong” with our ability to judge the like-
lihood that each separate hypothesis tested in an
individual study is true or false.
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Enter Bayes theorem. Unfortunately, those omi-
nous words, with their associations of hazy prior
probabilities and abstruse mathematical formulas,
strike fear into the hearts of most of us, clinician,
researcher, and editor alike. But Bayesian inference
immediately loses much of its menace once we re-
alize that it is, in fact, the exact equivalent of pre-
dictive value, a concept now familiar from its wide
use in diagnostic reasoning. It also helps to under-
stand that, mathematical niceties aside, Bayes theo-
rem is essentially a quantitative description of what
we do, qualitatively, every minute of the day: use
new information inductively to refine our judgments
about the correctness of what we already know. In
fancier language, Bayesian inference says that the
most effective way to develop a new and better
degree of confidence (posterior odds) in our knowl-
edge is to combine our previous confidence, derived
from sources outside a particular test or study (the
prior odds), with the “evidence” from that test or
study itself (the Bayes factor).

The importance of information from outside
sources becomes particularly clear in considering
the impact of a single diagnostic test across the full
spectrum of clinical situations. Thus, the positive
predictive value (posterior probability of disease) of
even a fairly sensitive and specific test might be only
0.1 or 0.2 when that test is used in the “screening
mode,” that is, when the patient being tested is very
unlikely to have the disease in the first place. In this
situation, combining the “evidence”—the likelihood
ratio for a positive test result—with outside infor-
mation—a very low pretest (prior) probability—
changes that probability relatively little, unless the
specificity of the test involved is almost perfect. In
contrast, the positive predictive value of the very
same test might be 0.90 to 0.95 or higher when
testing in the “confirmatory mode,” that is, when
testing is done in a patient who is already strongly
suspected of having the disease. Here, a relatively
high pretest (prior) probability can become substan-
tially higher when it is combined with the evidence
from a test that has even relatively modest specific-
ity. The same test can produce intermediate positive
predictive values when testing is done in the “diag-
nostic mode,” that is, when the pretest (prior) sus-
picion of disease is moderate to begin with.

In like fashion, the use of prior knowledge is
critical in interpreting biomedical studies, and fail-
ure to take it into account can easily lead to serious
misinterpretation of the “evidence.” For example, a
recent meta-analysis found an odds ratio of 1.66 in
favor of the beneficial effects of homeopathic ther-
apies over placebos. The associated 95% CI of 1.33
to 2.08, taken by itself, was interpreted as evidence
that is “not compatible with the hypothesis that the
clinical effects of homeopathy are due to placebo”
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(4). If, however, that evidence is combined with the
minimal plausibility (extremely low prior probabil-
ity) that clinically meaningful biological activity can
result from small doses of pure water, even water
that is shaken in a special way, the resulting poste-
rior level (posterior probability) of confidence in
biological activity remains very low. Explanations
other than biological efficacy are thus likely to ac-
count for the results actually observed (5). Con-
versely, in view of the existing evidence that vitamin
E may protect against coronary heart disease, the
finding, reported in this issue (6), that vitamin E
appears statistically not to prevent ischemic stroke
should be interpreted as ratcheting down the prob-
ability of stroke prevention slightly, rather than
flatly ruling out the possibility of such activity.
Figuring out the best way to combine the evi-
dence from a trial with prior information from
sources outside the trial is an important challenge.
It is also a very difficult one, because we often
weigh outside information subjectively. Goodman
has therefore chosen to focus his discussion primar-
ily on the less controversial and more objective core
of Bayesian inference: the measure of “the evi-
dence” from a trial or study. This measure is ex-
pressed by the Bayes factor, a metric already famil-
iar to many readers in the form of the likelihood
ratio, and one that, in itself, provides logically sound
and statistically meaningful information (3). An im-
portant lesson from this element of his discussion is
that the statistical evidence against a null hypothesis
is usually weaker when the data are interpreted by
using the Bayes factor than when the same data are
interpreted by using the P value approach.
Convinced that inductive inference is both useful
and feasible in interpreting scientific studies, in 1997
we began encouraging authors of manuscripts sub-
mitted to Annals to include Bayesian interpretation
of their results (7). Few have done so, probably
both because frequentist methods are universally
taught, enshrined in statistical software, and expect-
ed by biomedical journals and because researchers
are generally not familiar with alternative methods.
Researchers will be particularly interested in Good-
man’s essay, therefore, because Bayesian principles
can contribute importantly to the design of biomed-

ical studies. These principles include the importance
of an exhaustive search of the existing, prior evidence,
a step that is now often omitted (8), and calculation
of a minimum Bayes factor from the data. But oth-
ers stand to benefit as well from working their way
through his analysis. This includes clinicians, who
are increasingly required to interpret the strength of
evidence from individual studies in making decisions
at the bedside, and medical reporters, who are quick
to seize on the latest individual trial without con-
sidering other available studies, thereby creating a
great deal of unnecessary confusion.

Frequentist statistics can serve a useful purpose,
but their limitations are many and serious. Some
members of the biostatistical community have there-
fore worked long and hard to encourage the medi-
cal researchers and readers to use the Bayesian
approach to statistical inference in the design and
interpretation of their studies. Goodman’s article is
an elegant reflection of those efforts, providing both
an explication of underlying theory and solid sug-
gestions for practice. In our view, this article will
contribute importantly to the task of standing sta-
tistical inference right side up. We recommend it to
our readers’ most serious attention.

Frank Davidoff, MD
Editor
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